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1. Introduction

Recently, there have been appearing several papers on fuzzy algebraic structure.
In algebra, semirings(hemirings) appear in a natural way in theory of automata, for-
mal languages, theoretical computer sciences etc.. These areas and fuzzy logic have
useful application in control engineering. This may be a reason why there have been
attempts to fuzzify basic concepts of semirings (hemirings) theory. The concept of
fuzzy set was introduced by Zadeh [14]. Jun and Lee [5] applied the concept of fuzzy
sets to the theory of Γ-rings. The notion of Γ-semiring was introduced by Rao [8]
as a generalization of Γ-ring as well as of semiring. Γ-semirings also include ternary
semirings and provide algebraic home to non-positives cones of totally ordered rings.
Henriksen [2], Iizuka [3] and LaTorre [6] investigated h-ideals and k-ideals in hemir-
ings to amend the gap between ring ideals and semiring ideals. These concepts are
extended to Γ-semiring by Rao [8], Dutta and Sardar [1]. Jun et al. [4] and Zhan
et al. [15] studied these ideals in hemirings in terms of fuzzy subsets. We ([10, 11])
extended these concepts to the theory of Γ-hemirings. Motivated by Xie [13], as
a continuation of this we study the concept of the extension of fuzzy h-ideals in
Γ-hemirings and investigate some of its properties.
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2. Preliminaries

Definition 2.1. Let S and Γ be two additive commutative semigroups with zero.
Then S is called a Γ-hemiring if there exists a mapping S×Γ×S → S, (a, α, b) 7→ aαb,
satisfying the following conditions:

(i) (a + b)αc = aαc + bαc,
(ii) aα(b + c) = aαb + aαc,
(iii) a(α + β)b = aαb + aβb,
(iv) aα(bβc) = (aαb)βc,
(v) 0Sαa = 0S = aα0S ,
(vi) a0Γb = 0S = b0Γa

for all a, b, c ∈ S and for all α, β ∈ Γ. In addition, if Γ is also S-hemiring, we call S
to be both-sided Γ-hemiring. For simplification we write 0 instead of 0S and 0Γ. A
Γ-hemiring S is called commutative if aαb = bαa for all a, b ∈ S and α ∈ Γ.

Throughout this paper S denotes a both-sided Γ-hemiring with zero.

Definition 2.2. A left ideal A of a Γ-hemiring S is called a left h-ideal if for any
x, z ∈ S and a, b ∈ A, x + a + z = b + z ⇒ x ∈ A. A right h-ideal is defined
analogously.

Definition 2.3. Let S be a Γ-hemiring. A proper h-ideal I of S is said to be prime
if for any two h-ideals H and K of S, HΓK ⊆ I implies that either H ⊆ I or K ⊆ I.

Theorem 2.4 ([11]). If I is an h-ideal of a Γ-hemiring S then the following condi-
tions are equivalent:

(i) I is a prime h-ideal of S.
(ii) If aΓSΓb ⊆ I then either a ∈ I or b ∈ I where a, b ∈ S.

Definition 2.5 ([12]). Let µ and θ be two fuzzy sets of a Γ-hemiring S. Define a
generalized h-product of µ and θ by

µohθ(x) = sup[min
i
{min{µ(ai), µ(ci), θ(bi),

x+

n∑

i=1

aiγibi + z =
n∑

i=1

ciδidi + z

θ(di)}}]

= 0, if x cannot be expressed as above

where x, z, ai, bi, ci, di ∈ S and γi, δi ∈ Γ, for i = 1, 2, · · · , n.

Definition 2.6. Let µ be the non empty fuzzy subset of a Γ-hemiring S (i.e. µ(x) 6=
0 for some x ∈ S). Then µ is called a fuzzy left h-ideal [resp. fuzzy right h-ideal] of
S if

(i) µ(x + y) ≥ min{µ(x), µ(y)},
(ii) µ(xγy) ≥ µ(y) [resp. µ(xγy) ≥ µ(x)] for all x, y ∈ S, γ ∈ Γ,
(iii) For all x, a, b, z ∈ S, x + a + z = b + z implies µ(x) ≥ min{µ(a), µ(b)}.

A fuzzy ideal of a Γ-hemiring S is a non empty fuzzy subset of S which is a fuzzy
left ideal as well as a fuzzy right ideal of S. A fuzzy h-ideal µ of S is called a fuzzy
h-bi-ideal, fuzzy h-interior ideal if for all x, y, z, a, b ∈ S and α, β ∈ Γ, µ(xαyβz) ≥
min{µ(x), µ(z)}, µ(xαyβz) ≥ µ(y), respectively. A fuzzy subset µ of a Γ-hemiring
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S is called fuzzy h-quasi-ideal if µ satisfies (i) and (iii) along with the condition
(µohχS) ∩ (χSohµ) ⊆ µ, where χS is the characteristic function of S.

Now we recall following definitions and result from [7] for subsequent use.

Definition 2.7. Let µ and θ be two fuzzy sets of a Γ-hemiring S. Define h-product
of µ and θ by

µΓhθ(x) = sup[min{µ(a1), µ(a2),
x+a1γb1+z=a2δb2+z

θ(b1), θ(b2)}]
= 0, if x cannot be expressed as x + a1γb1 + z = a2δb2 + z

for x, z, a1, a2, b1, b2 ∈ S and γ, δ ∈ Γ.

Definition 2.8. A fuzzy h-ideal µ of a Γ-hemiring S is said to be prime (semiprime)
if µ is not a constant function and for any two fuzzy h-ideals σ and θ of S, σΓhθ ⊆ µ
implies that either σ ⊆ µ or θ ⊆ µ (resp. θΓhθ ⊆ µ implies θ ⊆ µ).

Theorem 2.9. Let µ be a fuzzy h-ideal of S. Then µ is a prime fuzzy h-ideal of S
if and only if the following conditions hold

(i) µ(0) = 1,
(ii) Im µ = {1, α}, α ∈ [0, 1),
(iii) µ0 = {x ∈ S : µ(x) = µ(0)} is a prime h-ideal of S.

3. Fuzzy h-ideal extension in Γ-hemirings

Definition 3.1. Let µ be a fuzzy subset of S and x ∈ S. Then the fuzzy subset
< x, µ > of S, defined by < x, µ > (y) = inf

γ∈Γ
µ(xγy) for all y ∈ S, is called the

extension of µ by x.

Theorem 3.2. Let µ is a fuzzy right h-ideal of S and x ∈ S. Then the extension
< x, µ > is a fuzzy right h-ideal of S.

Proof. Let p, q, a, b, z ∈ S and β ∈ Γ. Then

< x, µ > (p + q) = inf
γ∈Γ

µ(xγ(p + q))

= inf
γ∈Γ

µ(xγp + xγq))

≥ inf
γ∈Γ

min{µ(xγp), µ(xγq)}
= min{ inf

γ∈Γ
µ(xγp), inf

γ∈Γ
µ(xγp)}

= min{< x, µ > (p), < x, µ > (q)}
Also,

< x, µ > (pβq) = inf
γ∈Γ

µ(xγpβq) ≥ inf
γ∈Γ

µ(xγp).

Now let p + a + z = b + z. So, xγp + xγa + xγz = xγb + xγz. Then

< x, µ > (p) = inf
γ∈Γ

µ(xγp)

≥ inf
γ∈Γ

min{µ(xγa), µ(xγb)}
= min{ inf

γ∈Γ
µ(xγa), inf

γ∈Γ
µ(xγb)}

= min{< x, µ > (a), < x, µ > (b)}
Hence < x, µ > is a fuzzy right h-ideal of S. ¤
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Note. If µ is a fuzzy h-ideal of a commutative Γ-hemiring S and x ∈ S, then the
extension < x, µ > is a fuzzy h-ideal of S.

Proposition 3.3. If µi, i = 1, 2, ... be an arbitrary collection of fuzzy h-ideal of S,
then < x,∩

i
µi > is also a fuzzy h-ideal of S.

Definition 3.4 ([1]). Let R and S be Γ-hemirings and f : R → S be a function.
Then f is said to be a Γ-homomorphism if

(i) f(a + b) = f(a) + f(b),
(ii) f(aαb) = f(a)αf(b) for a, b ∈ R and α ∈ Γ,
(iii) f(0R) = 0S where 0R and 0S are the zeroes of R and S respectively.

Definition 3.5 ([9]). Let f be a function from a set X to a set Y and µ be a fuzzy
subset of X and σ be a fuzzy subset of Y. Then image of µ under f, denoted by
f(µ), is a fuzzy subset of Y defined by

f(µ)(y) =

{
supµ(x)
x∈f−1(y)

if f−1(y) 6= φ

0 otherwise

The pre-image of σ under f, symbolized by f−1(σ), is a fuzzy subset of X defined
by f−1(σ)(x) = σ(f(x)) for all x ∈ X.

Proposition 3.6. Let f : R → S be a morphism of Γ-hemirings.

(i) If φ is a fuzzy right h-ideal of S, then < z, f−1(φ) > is a fuzzy right h-ideal
of R, for any z ∈ R.

(ii) If f is surjective morphism and µ is a fuzzy right h-ideal of R, then < z,
f(µ) > is a fuzzy right h-ideal of S, for any z ∈ S.

Proof. Let f : R → S be a morphism of Γ-hemirings.
(i) Let φ be a fuzzy right h-ideal of S. Then by Proposition 17 of [10], we have

f−1(φ) is a fuzzy right h-ideal of R. Now < z, f−1(φ) > is an extension of f−1(φ) in
R. So, applying Theorem 3.2 we obtain that < z, f−1(φ) > is a fuzzy right h-ideal
of R.

(ii) Since f is surjective morphism and µ is a fuzzy right h-ideal of R, by Propo-
sition 17 of [10], we have f(µ) is a fuzzy right h-ideal of S. Hence with the help of
Theorem 3.2 we get that < z, f(µ) > is a fuzzy right h-ideal of S for any z ∈ S. ¤

Proposition 3.7. Let µ be a fuzzy h-ideal of S and x ∈ S. Then the following
conditions hold

(i) µ ⊆< x, µ >,
(ii) < (xγ)n−1x, µ >⊆< (xγ)nx, µ > where γ ∈ Γ,
(iii) If µ(x) > 0 then supp < x, µ >= S where supp µ is defined by

supp µ = {s ∈ S : µ(s) > 0}.
Proof. (i) Let y ∈ S. Now < x, µ > (y) = inf

γ∈Γ
µ(xγy) ≥ µ(y). Thus µ ⊆< x, µ >.
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(ii) Let n be a positive integer and y ∈ S. Then

< (xγ)nx, µ > (y) = inf
γ∈Γ

µ((xγ)nxγy)

≥ inf
γ∈Γ

µ((xγ)(xγ)n−1xγy)

≥ inf
γ∈Γ

µ((xγ)n−1xγy)

=< (xγ)n−1x, µ > (y).

So, < (xγ)n−1x, µ >⊆< (xγ)nx, µ >.
(iii) Let µ(x) > 0 and y ∈ S. Then < x, µ > (y) = inf

γ∈Γ
µ(xγy) ≥ µ(x). Thus y ∈

supp < x, µ > and consequently, S ⊆ supp < x, µ >. Hence S = supp < x, µ >. ¤

Proposition 3.8. If µ is a fuzzy h-bi-ideal of S then its extension by x ∈ S, < x, µ >
is also a fuzzy h-bi-ideal of S provided S is commutative.

Proof. Let µ be a fuzzy h-bi-ideal of S and its extension by x ∈ S is < x, µ >. Since
µ be a fuzzy h-bi-ideal it is sufficient to prove < x, µ > (pαqβr) ≥ min{< x, µ >
(p), < x, µ > (r)} for all p, q, r ∈ S and α, β ∈ Γ. Suppose p, q, r ∈ S and α, β ∈ Γ.
Now

< x, µ > (pαqβr) = inf
γ∈Γ

µ(xγpαqβr) ≥ inf
γ∈Γ

µ(xγp) =< x, µ > (p).

Also, < x, µ > (pαqβr) = inf
γ∈Γ

µ(xγpαqβr) ≥ inf
γ∈Γ

µ(xγr) =< x, µ > (r) (since S is

commutative). Therefore < x, µ > (pαqβr) ≥ min{< x, µ > (p), < x, µ > (r)}. So,
< x, µ > is a fuzzy h-bi-ideal of S. ¤

Proposition 3.9. If µ is a fuzzy h-interior-ideal of S then its extension by x ∈ S,
< x, µ > is also a fuzzy h-interior-ideal of S provided S is commutative and Γ is
also a S-hemiring.

Proof. Let µ be a fuzzy h-interior-ideal of S and its extension by x ∈ S is < x, µ >.
Then it is sufficient to prove < x, µ > (pαqβr) ≥< x, µ > (q) for all p, q, r ∈ S and
α, β ∈ Γ. Suppose p, q, r ∈ S and α, β ∈ Γ. Then

< x, µ > (pαqβr) = inf
γ∈Γ

µ(xγpαqβr)

= inf
γ∈Γ

µ(xγpαrβq) (since S is commutative)

= inf
γ′∈Γ

µ(xγ
′
q) (since Γ is also a S-hemiring)

=< x, µ > (q).

Hence < x, µ > is a fuzzy h-interior-ideal of S. ¤

Proposition 3.10. If µ is a fuzzy h-quasi-ideal of S then its extension by x ∈ S,
< x, µ > is also a fuzzy h-quasi-ideal of S.
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Proof. Let µ be a fuzzy h-quasi ideal of S and its extension by x ∈ S is < x, µ >.
Let p, a, b, z ∈ S. Then

< x, (µohχS) ∩ (χSohµ) > (p) = inf
γ∈Γ

((µohχS) ∩ (χSohµ))(xγp)

= inf
γ∈Γ

min{(µohχS)(xγp), (χSohµ)(xγp)}
≤ inf

γ∈Γ
min{µ(xγp), µ(xγp)} (since µ is a fuzzy h-quasi-ideal)

= inf
γ∈Γ

µ(xγp) =< x, µ > (p).

Also from Theorem 3.2 we have < x, µ > (p + q) ≥ min{µ(p), µ(q)} and p + a + z =
q + z implies < x, µ > (p) ≥ min{< x, µ > (a), < x, µ > (b)}. Hence < x, µ > is a
fuzzy h-quasi ideal of S. ¤

Remark 3.11. We know that if µ is fuzzy h-quasi-ideal of a Γ-hemiring S it is also
a fuzzy h-bi-ideal. In previous proposition 3.10 we show that its extension by any
element x ∈ S, < x, µ > is a fuzzy h-quasi-ideal also. Now it is a routine verification
to show that < x, µ > is also a fuzzy h-bi-ideal of S provided S is commutative.

Proposition 3.12. Let µ be a fuzzy h-ideal of S. Then for any x ∈ S, < x, µ+ > is
also a fuzzy h-ideal of S, where µ+ is defined by µ+(x) = µ(x)− µ(0) + 1.

Proof. Since µ is a fuzzy h-ideal of S, by Proposition 25 of [10] we have µ+ is also
a fuzzy h-ideal and hence by using Theorem 3.2 we deduce that < x, µ+ > is also a
fuzzy h-ideal of S. ¤

Proposition 3.13. If µ is a fuzzy h-ideal of S, then for any x ∈ S, < x, µβ,α >
is also a fuzzy h-ideal of S, where µβ,α(y) = βµ(y) + α, β ∈ (0, 1] and α ∈ [0, 1 −
sup{µ(y) : y ∈ S}].
Proof. Since µ is a fuzzy h-ideal of S, by Theorem 20 of [10] we have µβ,α is also a
fuzzy h-ideal and hence by using Theorem 3.2 we deduce that < x, µβ,α > is also a
fuzzy h-ideal of S. ¤

Proposition 3.14. If µ and ν are any two fuzzy h-ideal of S, then for any x ∈ S,
< x, µ×ν > is also a fuzzy h-ideal of S, where (µ×ν)(a, b) = min{µ(a), µ(b)}, a, b ∈
S.

Proof. Since µ and ν be any two fuzzy h-ideal of S, by Theorem 35 of [10] we
have µ × ν is also a fuzzy h-ideal and hence by using Theorem 3.2 we deduce that
< x, µ× ν > is also a fuzzy h-ideal of S. ¤

Theorem 3.15. Let µ, ν be any two fuzzy h-ideal of S and x, y ∈ S. Then < x, µ >
× < y, ν > is also a fuzzy h-ideal of S.

Proof. Sinceµ and ν be any two fuzzy h-ideal of S, by Theorem 3.2 we have < x, µ >
and < y, ν > are fuzzy h-ideals of S. Hence by using Theorem 35 of [10] we deduce
that < x, µ > × < y, ν > is also a fuzzy h-ideal of S. ¤

Proposition 3.16. Let µ be a prime fuzzy h-ideal of S. Then for all x, y ∈ S,
inf
γ∈Γ

µ(xγy) = max[µ(x), µ(y)]. Conversely, let µ be a fuzzy h-ideal of S such that
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Im µ = {1, α}, α ∈ [0, 1). If inf
γ∈Γ

µ(xγy) = max[µ(x), µ(y)] for all x, y ∈ S then µ is

a prime fuzzy h-ideal of S.

Proof. Let µ be a prime fuzzy h-ideal of S. Then by Theorem 2.9 we have, inf
γ∈Γ

µ(xγy) =

1 or α.
Case I. Let max[µ(x), µ(y)] = 1. Then suppose that µ(x) = 1. Consequently,
x ∈ µ0. As µ0 is an h-ideal of S, xγy ∈ µ0 for all s ∈ S and γ ∈ Γ. Thus
inf
γ∈Γ

µ(xγy) = 1 = max[µ(x), µ(y)].

Case II. Let max[µ(x), µ(y)] = α. Then µ(x) = µ(y) = α. This implies that
x, y 6∈ µ0. Since µ0 is a prime h-ideal of S, so xΓy 6⊆ µ0. Thus there exists some
γ1 ∈ Γ such that xγ1y 6∈ µ0, i.e., µ(xγ1y) 6= 1. Therefore µ(xγ1y) = α. Thus
inf
γ∈Γ

µ(xγy) = α = max[µ(x), µ(y)]. For the converse part, let x, y ∈ S such that

xΓy ⊆ µ0. Then xγy ∈ µ0 for all γ ∈ Γ. So inf
γ∈Γ

µ(xγy) = 1 = max[µ(x), µ(y)]. This

implies that either µ(x) = 1 or µ(y) = 1, i.e., either x ∈ µ0 or y ∈ µ0. Consequently,
µ0 is a prime h-ideal of S by Theorem 2.4. Hence by Theorem 2.9, µ is a prime
fuzzy h-ideal of S. ¤

Proposition 3.17. If µ is a prime (semiprime) fuzzy h-ideal of S then its extension
by x ∈ S, < x, µ > is also a prime (semiprime) fuzzy h-ideal of S.

Proof. Let µ be a prime fuzzy h-ideal of S and its extension by x ∈ S is < x, µ >.
Let p, q ∈ S and α ∈ Γ. Then

inf
α∈Γ

< x, µ > (pαq) = inf
α∈Γ

inf
γ∈Γ

µ(xγpαq)

= inf
γ∈Γ

{max(µ(xγp), µ(q))} (since µ is prime)

= max{ inf
γ∈Γ

µ(xγp), µ(q)}
= max{µ(x), µ(p), µ(q)}
= max{max{µ(x), µ(p)}, max{µ(x), µ(q)}}
= max{ inf

γ∈Γ
µ(xγp), inf

γ∈Γ
µ(xγq)}

= max{< x, µ > (p), < x, µ > (q)}.

Similarly, we can prove the result for semiprime fuzzy h-ideal. ¤

Proposition 3.18. Let µ be a prime fuzzy h-ideal of S and x ∈ S. Then

< x, µ > (y) = inf
s∈S

γ,δ∈Γ

[< xγsδx, µ > (y)]

for all y ∈ S.
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Proof. Let y ∈ S. Then

inf
s∈S

γ,δ∈Γ

[< xγsδx, µ > (y)] = inf
s∈S

γ,δ∈Γ

inf
γ1∈Γ

µ(xγsδxγ1y)

= inf
s∈S

γ,δ∈Γ

max[µ(xγsδx), µ(y)] = max

[
inf
s∈S

γ,δ∈Γ

µ(xγsδx), µ(y)

]

= max[max[µ(x), µ(x)], µ(y)] = max[µ(x), µ(y)]

= inf
γ∈Γ

µ(xγy) =< x, µ > (y).

This completes the proof. ¤

Definition 3.19. Let A ⊆ S and x ∈ S. Then we define < x, A > as

< x, A >= {y ∈ S : xΓy ⊆ A}.
Proposition 3.20. Let A be a non empty subset of S. Then < x, λA >= λ<x,A>

for every x ∈ S where λA denotes the characteristic function of A.

Proof. Let y ∈ S. Then < x, λA > (y) = inf
γ∈Γ

λA(xγy) = 1 or 0. If < x, λA > (y) = 1

then λA(xγy) = 1 for all γ ∈ Γ. Thus xγy ∈ A for all γ ∈ Γ, i.e., xΓy ⊆ A.
i.e., y ∈< x, A >. Consequently λ<x,A>(y) = 1. So, < x, λA >= λ<x,A>. If
< x, λA > (y) = 0 then λA(xγy) = 0 for some γ ∈ Γ. So xγy 6∈ A for some γ ∈ Γ.
Therefore xΓy 6⊆ A which implies that y 6∈< x,A >. Thus λ<x,A>(y) = 0. Hence
< x, λA >= λ<x,A>. This proves the proposition. ¤

Theorem 3.21. Let µ be a prime fuzzy h-ideal of S and x ∈ S be such that x 6∈ µ0.
Then < x, µ >= µ. Conversely, let µ be a fuzzy h-ideal of S such that Im µ = {1, α},
α ∈ [0, 1). If < x, µ >= µ for those x ∈ S for which µ(x) = α, then µ is a prime
fuzzy h-ideal of S.

Proof. Let µ be a fuzzy prime h-ideal of S. Then by Theorem 2.9,
(i) µ(0) = 1,
(ii) Im µ = {1, α} with α ∈ [0, 1),
(iii) µ0 = {x ∈ S : µ(x) = µ(0)} is a prime h-ideal of S.

Case I. If y ∈ µ0 then xγy ∈ µ0 for all γ ∈ Γ. So inf
γ∈Γ

µ(xγy) = 1 = µ(y). Therefore
< x, µ >= µ.

Case II. Let y 6∈ µ0. Since µ0 is a prime h-ideal of S and x, y 6∈ µ0, so xΓy 6⊆ µ0.
Therefore there exists some γ ∈ Γ such that xγy 6∈ µ0. Therefore µ(xγy) = α. Thus

inf
γ∈Γ

µ(xγy) = α = µ(y)

and hence < x, µ >= µ. Consequently, < x, µ >= µ for all x ∈ µ0.
Conversely, let x, y ∈ S. For the case µ(x) = α, we have max{µ(x), µ(y)} = µ(y).

Now µ(y) =< x, µ > (y) implies that max{µ(x), µ(y)} = inf
γ∈Γ

µ(xγy). The case

µ(x) = 1 implies that x ∈ µ0. So xγy ∈ µ0 for all γ ∈ Γ. Thus

inf
γ∈Γ

µ(xγy) = 1 = µ(x) = max{µ(x), µ(y)}.
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Thus inf
γ∈Γ

µ(xγy) = max{µ(x), µ(y)} for all x, y ∈ S. Hence by the converse part of

Theorem 3.16, µ is a prime h-ideal of S. ¤

Theorem 3.22. Let µ be a prime fuzzy h-ideal of S and x ∈ S be such that x ∈ µ0.
Then < x, µ >= 1S.

Proof. Let µ be a prime fuzzy h-ideal of S and y ∈ S. Then xγy ∈ µ0 for all s ∈ S
and for all γ ∈ Γ as x ∈ µ0. So < x, µ > (y) = inf

γ∈Γ
µ(xγy) = 1 = 1S(y) for all y ∈ S.

Hence < x, µ >= 1S . ¤

Corollary 3.23. Let I be an h-ideal of S. If I is prime h-ideal of S then for x ∈ S,
< x, λI >= λI where x 6∈ I.

Proof. Let I be a prime h-ideal of S. Then λI is a prime fuzzy h-ideal of S. Now
x 6∈ I implies that x 6∈ (λI)0. Hence by Theorem 3.21, < x, λI >= λI . ¤

Theorem 3.24. Let S be a commutative Γ-hemiring and µ be a fuzzy subset of S
such that < x, µ >= µ for all x ∈ S. Then µ is constant.

Proof. Let x, y ∈ S. Then
µ(y) =< x, µ > (y) = inf

γ∈Γ
µ(xγy)

= inf
γ∈Γ

µ(yγx) (since S is a commutative Γ-hemiring)

=< y, µ > (x) = µ(x).

Therefore µ(x) = µ(y) for all x, y ∈ S. Hence µ is constant. ¤

4. Conclusions

Throughout this paper in some cases, we consider Γ-hemiring S to be both-sided.
A careful reader may arise confusion to the definition of extension, in Γ-hemiring
with Γ-semigroup and may feel some difficulty when he/she read the paper taking
Γ-hemiring S as one-sided. We can solve this problem if we replace Definition 3.1
by < x, µ > (y) = inf

s∈S
α,γ∈Γ

µ(xαsγy). Then most of the above said results hold if we

change the proofs accordingly. This new definition will be more appropriate and be
fruitful in studying Γ-hemiring via its operator hemirings. In our next paper, we
follow the above definition.
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